|
In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination (a 3rd order truncation) of the regular 24-cell. There are 3 unique degrees of runcinations of the 24-cell including with permutations truncations and cantellations. ==Runcinated 24-cell== |- |bgcolor=#e7dcc3|Coxeter diagram |colspan=2| |- |bgcolor=#e7dcc3|Cells |240 |48 3.3.3.320px 192 3.4.4 20px |- |bgcolor=#e7dcc3|Faces |672 |384 288 |- |bgcolor=#e7dcc3|Edges |colspan=2| 576 |- |bgcolor=#e7dcc3|Vertices |colspan=2| 144 |- |bgcolor=#e7dcc3|Vertex figure |colspan=2|80px elongated square antiprism |- |bgcolor=#e7dcc3|Symmetry group |colspan=2|Aut(F4), [[3,4,3]], order 2304 |- |bgcolor=#e7dcc3|Properties |colspan=2|convex, edge-transitive |- |bgcolor=#e7dcc3|Uniform index |colspan=2|''25'' 26 ''27'' |} In geometry, the runcinated 24-cell or small prismatotetracontoctachoron is a uniform 4-polytope bounded by 48 octahedra and 192 triangular prisms. The octahedral cells correspond with the cells of a 24-cell and its dual. E. L. Elte identified it in 1912 as a semiregular polytope. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Runcinated 24-cells」の詳細全文を読む スポンサード リンク
|